New bounds for solutions of second order elliptic partial differential equations
نویسندگان
چکیده
منابع مشابه
New Bounds for Solutions of Second Order Elliptic Partial Differential Equations
1. Introduction In a previous paper [10] the authors presented methods for determining, with arbitrary and known accuracy, the Dirichlet integral and the value at a point of a solution of Laplace's equation. These methods have the advantage that upper and lower bounds are computed simultaneously. Moreover all error estimates are in terms of quadratic functionals of an arbitrary function, so tha...
متن کاملSecond-Order Elliptic Integro-Differential Equations: Viscosity Solutions' Theory Revisited
The aim of this work is to revisit viscosity solutions’ theory for second-order elliptic integrodifferential equations and to provide a general framework which takes into account solutions with arbitrary growth at infinity. Our main contribution is a new Jensen-Ishii’s Lemma for integro-differential equations, which is stated for solutions with no restriction on their growth at infinity. The pr...
متن کاملTopics in the theory of positive solutions of second-order elliptic and parabolic partial differential equations
The purpose of the paper is to review a variety of recent developments in the theory of positive solutions of general linear elliptic and parabolic equations of second-order on noncompact Riemannian manifolds, and to point out a number of their consequences. 2000 Mathematics Subject Classification. Primary 35J15; Secondary 35B05, 35C15, 35K10.
متن کاملOn Approximate Solutions of Second-Order Linear Partial Differential Equations
In this paper, a Chebyshev polynomial approximation for the solution of second-order partial differential equations with two variables and variable coefficients is given. Also, Chebyshev matrix is introduced. This method is based on taking the truncated Chebyshev expansions of the functions in the partial differential equations. Hence, the result matrix equation can be solved and approximate va...
متن کاملDiv First-Order System LL* (FOSLL*) for Second-Order Elliptic Partial Differential Equations
The first-order system LL* (FOSLL*) approach for general second-order elliptic partial differential equations was proposed and analyzed in [Z. Cai et al., SIAM J. Numer. Anal., 39 (2001), pp. 1418–1445], in order to retain the full efficiency of the L2 norm first-order system leastsquares (FOSLS) approach while exhibiting the generality of the inverse-norm FOSLS approach. The FOSLL* approach of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1958
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1958.8.551